Interfacial Morphology between Ramie Fibers and Phenolic Resins: Effects of Plasma Treatment and Cure Cycle

Author:

Hamad Sameer F12ORCID,Fei Teng1,Hayes Simon A3,Foreman Joel P1,Rodenburg Cornelia1

Affiliation:

1. Department of Materials Science and Engineering, the University of Sheffield, Sheffield, UK

2. College of Engineering, University of Misan, Maysan, Iraq

3. Department of Multidisciplinary Engineering Education, the University of Sheffield, Sheffield, UK

Abstract

Natural fiber–reinforced polymer composites offer many advantages over conventional composite materials, such as availability, low cost, inexpensive, lightweight, and high specific mechanical properties. However, the applications of these materials are still limited due to the challenges in achieving a good interface between the fibers and matrix. This is highly influenced by the fiber surface characteristics and the polymer matrix properties. Therefore, in this study, the surface characteristics of ramie fibers were modified using low-pressure plasma treatment in order to improve their interface to the phenolic resin. Furthermore, the effects of using two different curing cycles (acid cure and thermal cure) on the properties of short ramie fiber-phenolic composites were also investigated. A new method for making mats of random short ramie fibers was developed and used for the fabrication of composites containing plasma-treated fibers. The flexural properties of all composites were tested and the obtained fracture surfaces were investigated using LV-SEM. The results indicate that both plasma treatment and cure cycle conditions influence the fiber–matrix interface and consequently the flexural properties of the composites.

Funder

The Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3