Strength characterization of glass/epoxy plain weave composite under different biaxial loading ratios

Author:

Kobeissi A1ORCID,Rahme P2,Leotoing L1,Guines D1

Affiliation:

1. Université de Rennes, INSA Rennes, LGCGM (Laboratoire de Génie Civil et Génie Mécanique), France

2. Faculty of Engineering, Mechanical Engineering Department, Lebanese University, Lebanon

Abstract

Over the past years, various studies have been investigated in order to characterize the behavior of composite materials under different multi-axial loading conditions. One of the most used biaxial techniques is the in-plane biaxial test on cruciform specimens. To achieve reliable biaxial failure results, the design of the cruciform specimen presents a crucial part. Previous studies show that there is no well-adapted cruciform geometry for the composite biaxial tests. In this paper, an optimal cruciform specimen has been defined numerically for the composite characterization test. The specimen is composed of two aluminum tabs glued on top and bottom side of the plain-weave glass/epoxy composite. Finite element simulations have been carried out in order to study the influence of the aluminum grade and thickness on the stress distribution in the composite. An experimental validation confirms the failure of the specimen in the central zone under three different biaxial tensile ratios. The experimental strains were evaluated using the digital image correlation method. The traction/traction quadrant of the failure envelop was obtained and compared with different failure criteria. The maximum strain criterion shows a good agreement with the experimental results.

Funder

Université Libanaise

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3