Affiliation:
1. Donghua University, Shanghai, China
Abstract
This paper reports the compressive behaviors of three-dimensional four-directional and three-dimensional five-directional circular braided composite tubes subjected to quasi-static and impact compressions along longitudinal direction. The compression tests of the three-dimensional four-directional and three-dimensional five-directional carbon fiber/epoxy circular braided composite tubes were tested under strain rates ranging from 0.001 to 884 s–1. The compression stress–strain curves were obtained and the damage morphologies were observed to analyze the damage behaviors. A microstructure model of the braided preform and the braided composite tube was established to calculate the compressive deformation and damage mechanisms with finite element method. The stress–strain curves, specific energy absorption, deformations, and damage morphologies were sensitive to the strain rate and the braiding structures. The three-dimensional five-directional braided composite tubes have higher compressive strength and specific energy absorptions than the three-dimensional four-directional braided composite tubes.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献