Manufacturing of prestressed glass fiber reinforced polymer rebars and effect of fiber pretension on durability of rebars after conditioning in alkaline solution

Author:

Mohamed Mahmoud1ORCID,Ning Haibin1ORCID,Pillay Selvum1

Affiliation:

1. Department of Materials Science and Engineering, Materials Processing and Applications Development (MPAD) Center, University of Alabama at Birmingham, Birmingham, AL, USA

Abstract

Applying specific amount of fiber pretension during the manufacturing process of the composite rebars would potentially enhance their performance and durability. In this study, five sets of lab-scale prestressed glass fiber/vinyl-ester composite rebars were fabricated. Each set was manufactured using unique amount of fiber pretension. A set of unprestressed composite rebar was prepared as well. The effect of fiber pretension on the microstructure, tensile properties and long-term durability of rebars was investigated. In addition, the performance of the prestressed composite rebars was compared to composite rebars currently available in the market. An improvement in fiber alignment and a reduction in void content were observed within the pretensioned rebars. The composite rebars fabricated with pretension of 30 MPa showed the maximum increase in tensile properties. The guaranteed tensile strength and average tensile modulus were improved by 7.5% and 2.6%, respectively, compared to the unprestressed counterpart. The prestressed rebars showed relatively less surface degradation and lower moisture absorption after conditioning in alkaline solution at 60°C for 90 days. After conditioning, the tensile properties of the prestressed composite rebars showed superiority over the unprestressed rebar. Comparing to composite rebars available in the market, the prestressed composite rebars prepared in this study showed high performance in both short-term and long-term use.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference41 articles.

1. Fiber-Reinforced Composites

2. Composite Materials

3. Microstructure Characteristics of GFRP Reinforcing Bars in Harsh Environment

4. ACI (American Concrete Institute). Guide for the design and construction of structural concrete reinforced with FRP bars. ACI; 440: 1. R-06. MA: ACI, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3