Gas transport in fibrous media: Application to in-plane permeability measurement using transient flow

Author:

Hou Y12,Comas-Cardona S13,Binetruy C13,Drapier S2

Affiliation:

1. Polymers and Composites Technology and Mechanical Engineering Department, Ecole des Mines de Douai, France

2. Mechanics and Materials Processing Department, LCG UMR CNRS, Ecole Nationale Superieure des Mines, France

3. Research Institute in Civil Engineering and Mechanics, UMR CNRS 6183, Ecole Centrale de Nantes, LUNAM, France

Abstract

This article introduces a methodology to measure in-plane permeability of fibrous media using a transient one-dimensional air flow with absolute pressures ranging from 103 to 105 Pa. The method, based on the measurement of gas pressure at the boundaries throughout the transient flow, is convenient, clean and fast, avoids usage of a gas flow meter and offers a way to study the gas transport within fibrous media. The transport of a compressible fluid is described by several models to comply with different flow regimes which can occur during the experimental measurements. A thermal analysis is given to verify the validity of isothermal conditions during the tests. The permeability, only depending on the fibrous structure, is determined by inverse method, fitting the simulation results to the experimental data obtained using raising or dropping pressure methods. The deviation from Darcy's law caused by gas sliding effect is analysed and a relative parameter of fabric material shows a dependence in permeability, with a similar trend as the Klinkenberg sliding parameter in soils and rocks.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3