Affiliation:
1. Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India
2. Department of Mechanical Engineering, Durban University of Technology, Durban, South Africa
Abstract
The use of hollow glass particle-filled fiber-reinforced composites for aircraft applications requires proper understanding of their behavior under in-service temperature conditions in order to exploit their usage in the exterior parts of aircraft and other space vehicles. In this study, the glass fiber reinforced composites containing 0–30 vol% of glass microspheres were subjected to testing for monotonic tensile and flexural loading from room temperature to the test temperature (40°C – 120°C). The evolution of microscopic damage under different temperatures was elucidated by digital image correlation (DIC) strain fields. The strain fields revealed a transition from homogeneous to non-homogeneous pattern as the temperature increases due to softening of the matrix. As the glass microsphere contents in the matrix increased, the tensile and flexural properties of the composites decreased, and their reduction was highest for the specimen containing a 30 vol% microsphere by volume. The tensile properties are slightly decreased by increasing the temperature. The tensile specimens tested at room temperature exhibited limited delamination and fiber pullout, while extensive delamination and fiber splitting occurred in the specimens tested at 120°C. The flexural results of the glass fiber reinforced composite specimens exposed at 120°C demonstrated a considerable decrease in flexural strength compared with room temperature for 0 vol%, 10 vol%, 20 vol% and 30 vol% glass microsphere volume fraction. Finally, the Weibull parametric investigation was performed to model the degradation of modulus for various GMS contents with temperature variations.