Mechanical behavior of glass fiber-reinforced hollow glass particles filled epoxy composites under thermal loading

Author:

Paramasivam Anandakumar1ORCID,Kanny Krishnan2ORCID,Turup Pandurangan Mohan2ORCID,Ramachandran Velmurugan1ORCID

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India

2. Department of Mechanical Engineering, Durban University of Technology, Durban, South Africa

Abstract

The use of hollow glass particle-filled fiber-reinforced composites for aircraft applications requires proper understanding of their behavior under in-service temperature conditions in order to exploit their usage in the exterior parts of aircraft and other space vehicles. In this study, the glass fiber reinforced composites containing 0–30 vol% of glass microspheres were subjected to testing for monotonic tensile and flexural loading from room temperature to the test temperature (40°C – 120°C). The evolution of microscopic damage under different temperatures was elucidated by digital image correlation (DIC) strain fields. The strain fields revealed a transition from homogeneous to non-homogeneous pattern as the temperature increases due to softening of the matrix. As the glass microsphere contents in the matrix increased, the tensile and flexural properties of the composites decreased, and their reduction was highest for the specimen containing a 30 vol% microsphere by volume. The tensile properties are slightly decreased by increasing the temperature. The tensile specimens tested at room temperature exhibited limited delamination and fiber pullout, while extensive delamination and fiber splitting occurred in the specimens tested at 120°C. The flexural results of the glass fiber reinforced composite specimens exposed at 120°C demonstrated a considerable decrease in flexural strength compared with room temperature for 0 vol%, 10 vol%, 20 vol% and 30 vol% glass microsphere volume fraction. Finally, the Weibull parametric investigation was performed to model the degradation of modulus for various GMS contents with temperature variations.

Funder

DST INDIA

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3