Failure behavior of woven fiberglass composites under combined compressive and environmental loading

Author:

Paradiso Ariana1,Mendoza Isabella1ORCID,Bellafato Amanda1,Lamberson Leslie1ORCID

Affiliation:

1. Mechanical Engineering and Mechanics, Drexel University, USA

Abstract

The purpose of this study is to quantitatively characterize the compressive and damage behavior of a woven fiberglass composite under combined environmental loading. Cuboidal samples of a commercially available woven fiberglass epoxy resin composite, garolite G10, are examined under uniaxial compressive loading perpendicular to the plies at quasi-static (10−3 s−1) and dynamic (103 s−1) strain rates using a standard load frame and Kolsky (split-Hopkinson) bar. In order to simulate environmental conditions, a subset of samples were soaked in either distilled or ASTM standard seawater prior to loading. Two time periods of environmental conditioning were investigated: short term at two weeks and long term at four months. Results demonstrate that, on average, the dynamic compressive strength of the fiberglass increased 35% from the quasi-static. Moreover, environmentally treated samples generally experienced a decrease strain to failure, and composites exposed to water for only short periods exhibited signs of the absorbed water sustaining additional load under quasi-static rates. Ultra-high-speed photography combined with digital image correlation, a full-field surface kinematic measurement technique, is used to map 2D strains on the sample during loading. In all cases, a clear shear failure mechanism from local instabilities appears, and a Mohr–Coulomb failure criterion is used to extract a mesoscale cohesive shear stress and coefficient of internal friction.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3