Design guidelines for hybrid continuous/discontinuous carbon fibre laminates

Author:

Evans Anthony D1,Turner Thomas A1,Harper Lee T12ORCID,Warrior Nicholas A12

Affiliation:

1. Composites Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK

2. Advanced Composite Centre, University of Nottingham, Ningbo, China

Abstract

Combining discontinuous carbon fibre moulding compounds with unidirectional (UD) non-crimp fabric has been studied as a potential solution for producing cost effective composite structures, with short cycle times via compression moulding. The tensile stiffness and strength of a composite with a hybrid fibre architecture were found to be up to 60% and 110% higher, respectively, than the baseline discontinuous fibre moulding compound, when 20% (by vol.) of UD fibres were aligned in the primary loading direction. However, stress concentrations arising from the dissimilar material properties can result in the strength of the hybrid architecture being reduced to below that of the baseline composite if the UD fibres are not incorporated effectively. This paper focusses on optimising the stress transfer within the transition zone (inter-material interface) between the UD material and the discontinuous fibre moulding compound, when local isolated patches of continuous fibre are used rather than full coverage plies. This is key if hybrid architectures are to be adopted for structural applications, minimising the stress concentration effects from the UD ply ends, whilst maintaining the low cycle times and costs associated with compression moulding. Following aerospace laminate design guidelines, a range of step sizes and joint configurations have been considered for different ply drop strategies, minimising the magnitude of the stress concentration at the UD ply ends. Results indicate that the step length must be at least 20 times the thickness of the UD ply to ensure the bending strength at the joint is the same as the baseline discontinuous fibre material. An ‘alternating joint' yields 18% higher bending strengths than a conventional ‘stepped joint’ design, as the stress concentrations at the dropped ply ends are reduced in comparison to the inherent stress concentrations within the discontinuous fibre material.

Funder

Ningbo Municipal Bureau of Science and Technology

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3