Fatigue and static damage in curved woven fabric carbon fiber reinforced polymer laminates

Author:

Tasdemir Burcu123ORCID,Coker Demirkan12ORCID

Affiliation:

1. Department of Aerospace Engineering, Middle East Technical University, Turkey

2. METU Center for Wind Energy (RUZGEM), Middle East Technical University, Turkey

3. Department of Engineering Science, University of Oxford, United Kingdom

Abstract

Failure mechanisms of curved cross-ply laminates under static and fatigue loading have been studied extensively, but the examination of fabric laminates which are the most commonly used ply type in curved supports in airplane wing structures is lacking. In this study, unidirectional (UD) and fabric carbon fiber reinforced polymer (CFRP) laminates are examined to elucidate the failure initiation mechanisms of laminated composites under fatigue and static loading. The crucial point of the research is applying the analyses using fabric laminate with a currently used stacking sequence in commercial airplanes. In addition to the fabric laminate, UD laminate is also included in the research to compare the real complex stacking with the simplest stacking. In the experiments, it is observed that both static and fatigue failures initiate roughly at the maximum radial stress location (approximately 35% of the thickness from the inner radius). For UD laminates, there is no visible difference between the failure mechanisms under static and fatigue loadings. However, for fabric laminates, fatigue failure is observed to occur as a single major crack at the maximum radial stress location as in UD laminates, whereas static failure is observed to occur as multiple diffusive cracks at the maximum radial stress location. Additionally, cracks grow mostly as intralaminar cracks connected with regions of occasional interlaminar cracks.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3