Dielectric properties of microcrystalline cellulose/multi-wall carbon nanotubes multi-scale reinforced EVA/VeoVa terpolymer

Author:

Larguech Salma1,Kreit Lamyaa2,Zyane Adel3,Triki Asma1ORCID,El Hasnaoui Mohamed2ORCID,Achour Mohammed Essaid2ORCID,Belfkira Ahmed3ORCID

Affiliation:

1. LaMaCoP, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia

2. Laboratory of Material Physics and Subatomic, Faculty of Sciences, Ibn-Tofail University, Kenitra, Morocco

3. LCBM, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakech, Morocco

Abstract

Dielectric analyses were investigated on vinyl resin emulsion based on ethylene vinyl acetate/vinyl ester of versatic acid terpolymer (EVA/VeoVa) and its composites reinforced with microcrystalline cellulose and multi-wall carbon nanotubes. Dielectric spectra were measured in the frequency range from 10-1 Hz to 107 Hz and the temperature interval from -35°C to 130°C. Three dielectric relaxations were identified for the matrix. The first one, appearing at lower temperatures and higher frequencies, was associated with secondary β relaxation. The second one appearing above the glass transition temperature was attributed to the α relaxation due to the main glass transition of the terpolymer. The third dielectric relaxation appearing at higher temperatures and lower frequencies was attributed to α’ relaxation originating from the motion of more repeat units compared to the α one. The addition of the reinforcements into the matrix gave rise to three additional dielectric phenomena originating either from microcrystalline cellulose or matrix/reinforcement interfaces. Analyses of secondary dielectric relaxations at low temperatures by using the Havriliak-Negami model and those at high temperatures according to an adequate equivalent circuit model allowed probing reinforcement/matrix interactions. This dielectric study was complemented by the thermal, structural and morphological analyses based on differential scanning calorimeter (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3