Thermal Conductivity of Fiber Reinforced Composites by the FEM

Author:

Islam Md. R.,Pramila A.1

Affiliation:

1. University of Oulu, Department of Mechanical Engineering, Engineering Mechanics Laboratory, P.O. Box 444, FIN-90571, Oulu, Finland

Abstract

Applicability of the finite element method (FEM) in predicting the effective transverse thermal conductivity of fiber reinforced composites is systematically studied. Four different boundary condition combinations representing the periodicity of the temperature field are employed for ideal composites having perfect bond between fiber and matrix. Both circular and square cross-section fibers are studied. Comparisons of present FEM results with available analytical and experimental results reveal that periodicity realized by prescribed temperatures yields most accurate results up to high fiber volume fractions. In composites with interfacial thermal barrier resistance the effective conductivity varies in a wide range depending on the interfacial conductance between fiber and matrix. Best fit with available experimental results is obtained for both circular and square fibers when the dimensionless interfacial conductance is about 30. By employing the modeling practice found successful in the cases for which analytical andlor experimental results exist, some typical combined effects of partial debonding and matrix cracking, for which no such results exist, are finally considered.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3