Affiliation:
1. Department of Materials Science and Engineering, Imam Khomeini International University (IKIU), Iran
2. Simindasht Pishroghaleb Industrial Company, Iran
3. Department of Biomedical Engineering, University of Melbourne, Australia
4. Department of Industrial and Production Engineering, Federal University of Technology Akure, Nigeria
5. Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Czech Republic
Abstract
This paper investigates the effect of different tool pin morphologies on the inter-mixing capability, microstructure, mechanical properties, corrosion, fracture, and wear behaviors of the dissimilar friction stir welded AA6061-T6 alloy--Al 20wt% Mg2Si composite. Grooved shoulder tools with varying pin profiles such as tapered cylindrical, threaded tapered cylindrical, and triangular tapered pins were used for joining the base materials. The parameter combination of 80 mm/min travel speed and 1000 r/min rotation speed (at which no visible flow-induced defect was obtained) was used for this study. Among the pin profiles, the triangular tapered pin produced significantly improved intermingling/inter-material flow, fragmentation, and dispersion of the primary Mg2Si particles in the AA6061-T6/Al-Mg2Si joint. The triangular tapered tool reduced the average grain sizes of the AA6061 alloy and the Mg2Si particles from 18.4 to 4.6 µm and from 115 to 7.5 µm, respectively. Intermetallic phases of Mg2Si, AlFe, Al3.21Si0.47, and Al0.7Fe3Si0.3 are formed in the weld nugget of all the AA6061/Al-Mg2Si joints. The tensile strengths of the joints fabricated with tapered cylindrical, threaded tapered cylindrical, and triangular tapered tools are 108, 139, and 141 MPa, respectively. Abrasive wear is promoted in the joints fabricated with triangular tapered tool due to the homogeneous dispersion and fragmentation of the inherent hard Mg2Si particles. The corrosion attack is dependent on the fragmentation level of the Mg2Si phase. Triangular tapered pin tool is recommended for dissimilar Al/composite welding due to favorable tool-induced material flow, dispersion, and fragmentation of reinforcement.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献