Detection of Damage in Composite Materials by Thermo-Acoustic Emission Measurement

Author:

Sato Norio1,Kurauchi Toshio1,Kamigaito Osami1

Affiliation:

1. Toyota Central Research and Development Laboratories, Inc. Nagakute-cho, Aichi-gun, Aichi 480-11 Japan

Abstract

Characteristic acoustic emission behavior was observed when a composite was subject to a thermal cycle (thermo-acoustic emission). A lot of emission was observed in the ther mal cycle for a composite which had damage induced by mechanical loading. On the other hand, the emission was hardly observed for a sound composite in the thermal cycle. The occurrence of the emission was restricted only to the composite with damage. Further more, the emission activity depended on the degree of the damage. The emission is con sidered to be generated due to the friction of the crack faces by the thermal loading. The thermo-acoustic emission measurement is considered to be anticipated as nondestructive evaluation for composite materials.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference6 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3