A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of polyamide-6 nanocomposites

Author:

Benkaddour Abdelhaq12,Demir Eyup Can1ORCID,Jankovic Nicole C2ORCID,Kim Chun Il1,McDermott Mark T2,Ayranci Cagri1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

2. Department of Chemistry, University of Alberta, Edmonton, AB, Canada

Abstract

Recent demands for high-performance lightweight materials have brought researchers’ attention to various nanoparticles to reinforce polymeric materials. As such, sustainable and stiff cellulose nanocrystals (CNC) have become a popular candidate as nano-reinforcements. While CNC can offer great advantages, such as high mechanical properties and low density, it might agglomerate even in hydrophilic polymers because of its strong affinity to itself (intra and intermolecular hydrogen bonds) which prevents its broader use in industrial applications. This study aims to improve the compatibility between CNC and polyamide 6 (PA6) by a chemical modification that produces a surface polarity drastically different from non-modified CNC. The surface of CNC was rendered by the covalent coupling of stearic acid (SA) to the surface hydroxyl groups to produce stearate modified CNC (CNC SA). The effect of the modification was analyzed for CNC SA reinforced PA6 nanocomposites, and the results are compared to that of non-modified CNC reinforced PA6 samples. The addition of unmodified CNC to PA6 provided a modest improvement while the addition of CNC-SA provided substantial improvement on the modulus and tensile strength of the nanocomposite films.

Funder

National Research Council Canada

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3