Prediction of creep failure life for unidirectional CFRP with heat-resistant epoxy resin as matrix exposed to high temperature under tension load

Author:

Miyano Yasushi1,Nakada Masayuki1ORCID,Morisawa Yoko1,Matsuno Junya2,Kageta Soshi2

Affiliation:

1. Materials System Research Laboratory, Kanazawa Institute of Technology, Hakusan, Japan

2. Advanced Technology Research Laboratories, Meidensha Corporation, Tokyo, Japan

Abstract

The accelerated testing methodology (ATM) developed by the authors is the methodology for predicting statistically long-term life of CFRP structures based on the viscoelasticity including the time-temperature superposition principle for matrix resin. The formulae of ATM are expressed as the product of static strength at room temperature, its dispersion, and the viscoelastic parameter of matrix resin that changes with time and temperature history. This methodology ATM was applied to the prediction of long-term creep failure life for unidirectional CFRP with heat-resistant epoxy resin as matrix under heat degradation in this study. Resin impregnated CFRP strands with heat-resistant epoxy resin were molded using a filament winding system as virgin specimens of unidirectional CFRP. Then, heat-degraded specimens were prepared by exposing the virgin specimens under acceleration conditions determined based on the time-temperature superposition principle for chemical deterioration assuming the condition of practical temperature 110°C and period 10 years. Second, the creep strengths of virgin and heat-degraded CFRP strands were statistically predicted based on ATM and the effect of heat degradation on the long-term life of CFRP strands was evaluated. As results, it was cleared that when the creep strength of CFRP strands undergoes thermal aging at the practical condition, in addition to the strength decrease to time due to the viscoelasticity of the resin, a comparable decrease in static strength and increase in this scatter occur.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3