On a Modeling of the Plastic Response of FRP under Monotonic Loading

Author:

Surrel Y.1,Vautrin A.1

Affiliation:

1. Ecole Nationale Supérieure des Mines de Saint-Etienne Department of Mechanical and Materials Engineering 158, Cours Fauriel 42023 Saint-Etienne Cedex 2 France

Abstract

It is shown that the extensive non-linearity which can be observed in the stress-strain response of CFRP submitted to tensile tests in angle-ply or off-axis configurations cannot be of viscoelastic nature. A simple model is proposed to evaluate the response of a lamina of glass- or carbon- reinforced plastic under tensile loading. This model is based on an exponential decrease of the shear and transverse moduli, with respect to the corresponding total strains. It has been experimentally assessed and successfully applied to fit the mechanical response of various [±θ] nS laminates under tensile testing. This model gives acceptable results up to the failure of those laminates which can be correlated with a quadratic criterion involving shear and normal stresses within the laminae. This model provides a framework to quantitatively study the effects of environmental conditions such as moisture or temperature on the mechanical response of these materials.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3