Bending performance enhancement by nanoparticles for FFF 3D printed nylon and nylon/Kevlar composites

Author:

Wang Yachao1,Shi Jing1ORCID,Liu Zhihui1

Affiliation:

1. Department of Mechanical & Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, USA

Abstract

Fused filament fabrication (FFF) has been a major 3D printing technique for making thermoplastic products for decades. However, FFF printing for thermoplastic composites with aligned continuous fibers has been reported with limited success for only several years. In this study, we introduce an enhanced FFF-based approach by incorporating nanoparticles to the thermoplastic composites with continuous fibers. Our investigation focuses on the bending properties of FFF-printed fiber reinforced composites with and without nanoparticles. With Nylon 6 (PA 6) being the matrix material, nanocomposite filaments are obtained by adding carbon nanotubes (CNTs), graphene nano platelets (GNPs), or amino (NH2-) functionalized GNPs. Various PA 6 matrix nanocomposite filaments are prepared through mixing and filament extrusion process. The nanocomposite filaments are then 3D printed with or without continuous Kevlar fiber prepreg filaments. For 3D printed pure PA 6, the addition of 1 wt% GNP-NH2 increases the flexural strength and bending modulus by 334% and 315%, respectively. For 3D printed PA 6/Kevlar composite, the addition of 1 wt% GNP-NH2 increases the flexural strength and bending modulus by 195% and 35%, respectively. However, the addition of CNTs or GNPs (up to 1 wt%) is less effective as compared with GNP-NH2. The underlying mechanisms are discussed based on the matrix/fiber interfacial analysis.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3