Influence of macro-topography on mechanical performance of 1.0 wt% nanoclay/multi-layer graphene-epoxy nanocomposites

Author:

Atif Rasheed1,Inam Fawad1

Affiliation:

1. Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK

Abstract

Influence of topography on the variation in mechanical performance of 1.0 wt% multi-layer graphene (MLG)/nanoclay-epoxy samples has been investigated. Three different systems were produced: 1.0 wt% MLG-EP, 1.0 wt% nanoclay-EP, and 0.5 wt% MLG-0.5 wt% nanoclay-EP. The influence of synergistic effect on mechanical performance in case of hybrid nanocomposites is also studied. Various topography parameters studied include maximum roughness height (Rz or Rmax), root mean square value (Rq), roughness average (Ra), and surface waviness (Wa). The Rz of as-cast 1.0 wt% multi-layer graphene, nanoclay, and 0.5 wt% MLG-0.5 wt% nanoclay-EP nanocomposites were 41.43 µm, 43.54 µm, and 40.28 µm, respectively. The 1200P abrasive paper and the velvet cloth decreased the Rz value of samples compared with as-cast samples. In contrary, the 60P and 320 P abrasive papers increased the Rz values. Due to the removal of material from the samples by erosion, the dimensions of samples decreased. The weight loss due to erosion was commensurate with the coarseness of abrasive papers. It was recorded that multi-layer graphene is more influential in enhancing the mechanical performance of epoxy nanocomposites than nanoclay. Additionally, it was observed that mechanical performance of hybrid nanocomposites did not show a marked difference suggesting that synergistic effects are not strong enough in multi-layer graphene and nanoclay.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3