Strength Prediction and Optimization of Composites with Statistical Fiber Flaw Distributions

Author:

Zhanjun Gao 1,Reifsnider Kenneth L.2,Carman Greg2

Affiliation:

1. Department of Mechanical and Aeronautical Engineering Clarkson University Potsdam, NY 13699

2. Department of Engineering Science and Mechanics Virginia Polytechnic Institute and State University Blacksburg, VA 24061

Abstract

For continuous fiber reinforced polymeric composites the process domi nating tensile strength is fiber fracture. This phenomena results in stress concentrations in adjacent fibers over some distance which is directly associated with the ineffective length. This length is the controlling factor in the theory of bundle strength for polymer-based composites. The associated stress concentration factor, C, is normally associated with fracture propagation in both the matrix and surrounding fibers, and should also be in cluded as an important part of any representation of the mechanism controlling tensile fail ure in fibrous composites. In this paper, we combine bundle theory with the mechanics of local stress concentration in the development of a mechanistic representation of tensile strength. The resulting analysis is applied to numerical studies of the influence of micromechanical properties and irregular fiber spacing on the tensile strength, and a dis cussion of optimal design parameters for composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3