Numerical simulations of combined size effects acting on an open-hole laminated composite plate under tension

Author:

Serra Joel1,Bouvet Christophe1ORCID,Karinja Haridas Prajwal1,Ratsifandrihana Léon2

Affiliation:

1. Institut Clément Ader, Université de Toulouse, UPS, IMT Mines Albi, INSA, ISAE-SUPAERO, Toulouse, France

2. SEGULA Aerospace and Defence, Colomiers, France

Abstract

Numerical and experimental research programs have been carried out to investigate the effect of scaling on the tensile strength of notched composites. This paper presents a computational study of scaled open-hole tensile tests using the Discrete Ply Model (DPM) method. This finite element model is discrete, and only a small number of parameters are required from experimental characterization tests. Experimental and numerical strength values are compared here, and reveal that DPM simulations tend to slightly overestimate strength values, with an average discrepancy of 9.7%. However, DPM Results show that such modeling simulates both the reduction in strength when specimen size is increased for sublaminate level scaled specimens, where failure is fiber dominated, and the increase in strength when specimen size is increased for ply level scaled specimens, where failure is delamination dominated. In all cases, increasing the total thickness of the specimen leads to a decrease in strength and this effect is dominant over the effect of increasing hole diameter. As well as the variation in strength, three distinct failure mechanisms are observed: fiber failure with extensive matrix damage (pull-out failure), fiber failure with little or no matrix damage (brittle failure) and delamination failure. Comparisons with experiments demonstrate that tensile strengths, damage propagation scenarios and failure patterns are predicted with acceptable accuracy.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3