Mechanochemical surface modification of carbon fibers using a simple rubbing method

Author:

Motozuka S1,Tagaya M2,Hayashi K1,Kameyama T1,Oguri H1,Xu Z3

Affiliation:

1. Department of Mechanical Engineering, Gifu National College of Technology, Japan

2. Department of Materials Science and Technology, Nagaoka University of Technology, Japan

3. Department of Materials and Production Engineering, Hiroshima University, Japan

Abstract

A simple rubbing treatment was used to mechanochemically modify the surface of polyacrylonitrile-based carbon fibers and its effect on their surface structure and functional groups was studied using several surface characterization techniques. To control the mechanochemical effect, the shear forces accompanying rubbing were kept constant. Scanning electron microscopy tests and the peak positions and widths of the main Raman spectroscopy bands indicated that there were no morphological changes to the carbon fibers following rubbing. In contrast, X-ray photoelectron spectroscopy showed an increase in oxygen-containing functional groups; in addition to hydroxyl species, the main groups introduced were alkoxide, carbonyl, and carboxyl groups. The ratio of carboxyl groups on the carbon fiber surface increased with the shear force magnitude, indicating carbon surface oxidation. The difference between the Raman and X-ray photoelectron spectroscopy results indicates that the modification was confined to the first few atomic layers; therefore, this rubbing method is capable of producing efficient mechanochemical surface modification of carbon fibers. This technique is simple, is relatively inexpensive, and is applicable to carbon fiber-reinforced plastic processing techniques.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3