Performance characteristics of polyethylene/old corrugated container composites reinforced with carbon nanotubes

Author:

Kord Behzad1,Roohani Mehdi1

Affiliation:

1. Department of Paper and Packaging Technology, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), Karaj, Iran

Abstract

The physical, mechanical, thermal, and flammability properties of high-density polyethylene/old corrugated container composites reinforced with carbon nanotubes are presented in this study. High-density polyethylene/old corrugated container composites with different loadings of carbon nanotube (0, 1, 3, and 5 phc) were prepared by melt compounding followed by injection molding. Results indicated that the incorporation of carbon nanotube into high-density polyethylene, significantly improved the mechanical properties of the composites. The tensile and flexural properties achieved the maximum values when 3 phc carbon nanotube was added. Meanwhile, the impact strength of the composites progressively decreased with increasing carbon nanotube content. Furthermore, the water absorption and thickness swelling of the samples remarkably reduced with the addition of carbon nanotube. From thermogravimetric analysis data, the presence of carbon nanotube could enhance the thermal stability of the composites, especially the maximum weight loss rate temperature and also the better char residual was obtained at high loading level of carbon nanotube. Simultaneous differential scanning calorimetry thermograms revealed that the thermal degradation temperatures for the samples with carbon nanotube were much higher than those made without carbon nanotube. Moreover, it was found that the addition of carbon nanotube results in a significant enhancement in flame retardancy of the composites. Morphological observations showed that the nanoparticles were predominantly dispersed uniformly within the high-density polyethylene matrix.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3