Micromechanical modeling of anisotropic water diffusion in glass fiber epoxy reinforced composites

Author:

Gagani Abedin1ORCID,Fan Yiming2,Muliana Anastasia H2,Echtermeyer Andreas T1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Norway

2. Department of Mechanical Engineering, Texas A&M, USA

Abstract

Fluid diffusion in fiber reinforced composites is typically anisotropic. Diffusivity in the fiber direction is faster than in the transverse direction. The reason for this behavior is not yet fully understood. In this work, dealing with glass fiber epoxy composite immersed in distilled water, an experimental procedure for determination of anisotropic diffusion constants from a laminate is presented. The method has the advantage that it does not require sealing of the samples edges because 3-D anisotropic diffusion theory is implemented for obtaining the diffusion constants. A microscale model is presented, where matrix and fiber bundles are modeled separately. The matrix properties have been obtained experimentally and the fiber bundle properties have been deduced by the composite homogenized diffusivity model. The analysis indicates that the anisotropic diffusion of the composite is due to inherent anisotropic properties of the fiber bundles.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3