A numerical investigation of the statistical size effect in non-crimp fabric laminates under homogeneous compressive loads

Author:

Daum Benedikt1ORCID,Gottlieb Gerrit1,Safdar Nabeel1,Brod Martin1,Ohlendorf Jan-Hendrik2ORCID,Rolfes Raimund1

Affiliation:

1. Institute of Structural Analysis, Leibniz Universität Hannover, Hannover, Germany

2. Institute for Integrated Product Development (BIK), University of Bremen, Bremen, Germany

Abstract

The compressive strength of fiber reinforced composites is typically limited by a shear localization phenomenon known as microbuckling and is very sensitive to local imperfections of fiber alignment. Local misalignments act as randomly distributed flaws and introduce a dependence of the compressive strength on the size of material volume element under consideration. For homogeneously loaded material elements, weakest-link theory in combination with a Weibull power law is a frequently employed statistical model for microbuckling strength. This implies a dependence of strength on the size of volume under consideration. The present contribution investigates the strength–size relation for a non-crimp fabric via a numerical approach. Characteristics of the misalignment flaws used in simulations are derived from a comprehensive data set collected via large-scale measurements of roving dislocations on dry fiber material. Predictions resulting from the weakest-link Weibull theory are compared against strength–size statistics gathered by numerical analysis. In this manner, the size effects in single plies and laminates are quantified. The main findings are that weakest-link Weibull theory is well suited to predict size related strength loss in individual plies. However, it is also found that when plies are bonded to form laminates, misalignments in individual plies are mitigated in a way that is inconsistent with the weakest-link assumption. In all situations considered here, the strength loss expected from weakest-link Weibull theory was outweighed by a strength increase due to the mitigation effect when the volume was increased by adding extra layers to a laminate.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3