Study of mechanical properties and wear resistance of nanostructured Al 1100/TiO2 nanocomposite processed by accumulative roll bonding

Author:

Najjar Ismail R.1,Elmahdy Marwa2ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi, Arabia

2. Mechanical Department, Higher Technological Institute, 10th of Ramadan, Egypt

Abstract

Aluminum (Al) composites have been extensively developed for automotive applications due to their high specific strength. Therefore, in this study, an Al-titanium dioxide (TiO2) nanocomposite was processed using the accumulative roll bonding (ARB) process. The mechanical characteristics of monolithic and nanocomposites specimens made with 0, 1, 2, and 3 wt% TiO2 nanoparticles as reinforcement were studied at several ARB passes. According to the microstructure of the composites, rolling after five passes achieves a homogenous distribution of reinforcement particles, ultrafine and elongated grains of the matrix. After five ARB passes, the TiO2 particles were uniformly dispersed. Finally, scanning electron microscopy and energy dispersive spectroscopy revealed that the Al-TiO2 nanocomposite had an appropriate dispersion of TiO2 nanoparticles. Vickers microhardness improves as the number of accumulative roll bonding passes increases. Furthermore, after five passes, Vickers microhardness testing revealed that the sample with 3%TiO2 has the greatest hardness value of 112 HV, which is significantly greater than the 44 HV hardness value of the ARB-processed aluminum. The mechanical properties of the specimens, yield and ultimate strengths, improved with the addition of TiO2 nanoparticles. Due to good bonding among the components, mechanical parameters such as microhardness and tensile strength were more than three times better than the Al matrix.

Funder

Deanship of Scientific Research

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3