A resistor network model for analysis of current and temperature distribution in carbon fibre reinforced polymers during induction heating

Author:

Lundström Fredrik1ORCID,Frogner Kenneth2,Andersson Mats1

Affiliation:

1. Division of Production and Materials Engineering, Lund University, Lund, Sweden

2. Corebon AB, Malmö, Sweden

Abstract

The interest in carbon fibre reinforced polymers (CFRP) is growing due to their high strength and stiffness compared to their weight, in industries such as automotive and aerospace. This creates a high demand for more effective production methods. Volumetric induction heating of the electrically conductive carbon fibres enable unmatched heat rates and can be used both during manufacturing and joining of parts, but also means technical challenges in terms of uniform temperature distribution. Understanding and prediction of the heating pattern is therefore an important step towards an industrial solution. This article presents a model for simulation of the current and temperature distribution in CFRP during induction heating in which the CFRP is modelled as a network of discrete resistors where the local currents are determined by Kirchhoff’s circuit laws and the temperature distribution is computed by the finite difference method. The model is a complement to traditional three-dimensional finite element simulations and allows for a better understanding of the current paths, and thereby the heating pattern, on a tow size level. Thermographic recordings during induction heating experiments validates the model.

Funder

VINNOVA

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3