Development of magnesium-based hybrid metal matrix composite through in situ micro, nano reinforcements

Author:

Singh Harprabhjot1,Kumar Deepak1ORCID,Singh Harpreet2

Affiliation:

1. Centre for Automotive Research and Tribology, Indian Institute of Technology Delhi, India

2. Department of Mechanical Engineering, Indian Institute of Technology Ropar, India

Abstract

Present work aims at developing Magnesium based metal matrix composite (MMC) through in-situ reaction. In-situ generation of micro and nano particles in the Mg-melt is supposed to have a better bonding with the matrix. Ceric ammonium nitrate (CAN) is added to initial Magnesium melt (with an aim to generate CeO2 and MgO through in-situ reaction) at temperatures of 670 °C and 870 °C. The developed MMCs are solution treated to get rid of intermetallic. The nature of particles is explored with X-ray diffraction (XRD) and Energy dispersion spectroscopy (EDS). The morphology and sizes of particles are keenly jotted using scanning electron microscope (SEM). Mechanical responses of developed MMCs are recorded through Hardness, Compression and scratch tests. The compression fractured surfaces are analyzed with SEM and scratched samples are analyzed on 3 D optical profilometer to explore deformation behavior. The observations indicate the in-situ formation of CeO2, MgO and CeMg12 intermetallic phases in different types and sizes. Further, these particles are responsible for improved mechanical properties. The findings are supported by the contribution of different strengthening mechanisms.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3