Revisiting Kirchhoff–Love plate theories for thin laminated configurations and the role of transverse loads

Author:

Zhao Xue1,Sun Zhi123ORCID,Zhu Yichao123ORCID,Yang Chunqiu1

Affiliation:

1. Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning, P.R. China

2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Liaoning, P.R. China

3. Ningbo Institute of Dalian University of Technology, Jiangbei District, Ningbo, P. R. China

Abstract

The present article aims to re-derive a (de-)homogenization model for particularly investigating the behavior of thin laminated plates withstanding transverse loads. Instead of starting with Kirchhoff-type of assumptions, we directly apply perturbation analysis, in terms of the small parameter introduced by the thinness of composite plates, to the original three-dimensional governing elastostatic equations. The present article sees its intriguing points in the following three aspects. First, it is shown that transverse loads applied on a thin laminated plate induce an in-plane stress response, which essentially differs from the case of single-layered homogenous plates. A scaling law estimating the magnitude of the in-plane stresses due to transverse loads is then given, and a size effect in such induced in-plane stresses arises. Second, the stress state at any position of interest in the original three-dimensional configuration can be asymptotically estimated following a (de-)homogenization scheme, and the (de-homogenization) accuracy is shown, both theoretically and numerically, to be at a same order of magnitude as the thickness-to-size ratio. Third, the asymptotic analysis here identifies the right order of magnitude for the transverse normal strain, which is often set to vanish, leading to the so-called Poisson’s locking problem in classical thin plate theories.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3