High-speed edge trimming of carbon fiber-reinforced polymer composites using coated router tools

Author:

Prakash R1ORCID,Krishnaraj Vijayan2,Sheikh-Ahmad Jamal3

Affiliation:

1. Department of Mechanical Engineering, PSG College of Technology, Coimbatore, India

2. Department of Production Engineering, PSG College of Technology, Coimbatore, India

3. Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, United Emirates

Abstract

During trimming of edges of carbon fiber-reinforced polymer composite parts, issues such as resin degradation, delamination, and poor surface finish at the trimmed edges, and increased tool wear in cutting tools used is common. Therefore, it is essential to carry out investigations on edge trimming of carbon fiber-reinforced polymer to find the effect of cutting forces generated and the cutting tool temperature induced at different high speeds and feeds conditions. In this work, two different-coated router tools of titanium aluminum nitride-coated and diamond-like carbon-coated routers were used for investigating the effect of these coatings on cutting force and cutting tool temperature which affect the surface quality of trimmed carbon fiber-reinforced polymer. From the investigation, it was found that the diamond-like carbon-coated router tool has generated lower cutting forces, cutting tool temperatures, and, in turn, better surface finish even at high-speed conditions when compared to other tools. Due to the complex geometry of the router tool, online tool wear monitoring by acoustic emission technique was employed. Acoustic emission signals were taken as the measuring index of tool wear which shows good correlation with direct tool wear measurements. From the experiments, it was found that the tool performance of the diamond-like carbon-coated router is superior when compared to other tools. In addition, for edge trimming of carbon fiber-reinforced polymer composite parts, the diamond-like carbon router tool performed without much disturbance for a length of machining of around 5.9 m which is about 46% of increase in length of machining when compared to uncoated router tool.

Funder

University Grants Commission

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3