Experimental investigation and phenomenological modeling of hygrothermal effect on tensile fatigue behavior of carbon/epoxy plain weave laminates

Author:

Khay M1,Ngo AD1,Ganesan R2

Affiliation:

1. LFCMC, Mechanical Engineering Department, École de technologie supérieure, Canada

2. CONCOM, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Canada

Abstract

The purpose of this paper is to study the hygrothermal effect on fatigue behavior of quasi-isotropic carbon/epoxy plain weave aerospace laminates containing artificial flaw under axial tension–tension loading. Dry and wet specimens were tested at tensile load-controlled cyclic loading with a stress ratio R = 0.1 and a load frequency of 7 Hz at room temperature (RT) and at 82℃ under different stress levels. Allowable stiffness change as a failure criterion was used to determine the delamination propagation onset threshold under cyclic tensile loading at each environmental condition. The delamination propagation onset was verified using the ultrasonic imaging (C-Scan) technique. The experimental results show that (1) fatigue life of CFRP specimens was more individually affected by moisture than by temperature and (2) combined moisture and temperature cause a drastic decrease in fatigue life. Finally, an investigation of the effect of hygrothermal conditions on stiffness degradation and damage of composite laminates subjected to tensile fatigue loading has been also carried. On the basis of the residual stiffness degradation, a damage variable was presented and phenomenological damage models were proposed by employing fatigue modulus and secant modulus concepts as measure of material damage.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3