Numerical prediction of thermal conductivity and thermal expansion coefficient of glass fiber-reinforced polymer hybrid composites filled with hollow spheres

Author:

Moradi Alireza1,Ansari Reza1,Hassanzadeh-Aghdam Mohammad Kazem2ORCID,Jamali Jamaloddin3

Affiliation:

1. Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

2. Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran

3. College of Engineering and Technology, American University of the Middle East, Kuwait

Abstract

The optimal performance of composites enriched with hollow spheres has been reported in contemporary literature, whereas their thermal properties have received less attention. In this regard, a finite element method (FEM)-based micromechanical model has been developed systematically to investigate the role of intra-matrix embedding of hollow spheres on the thermal conductivity and coefficient of thermal expansion (CTE) of unidirectional fiber-reinforced hybrid composites. In so doing, the concept of representative volume element (RVE) considers microstructures comprising an epoxy matrix, E-glass fiber, and E-glass hollow spheres, assuming perfect bonding (ideal interface) between the components and modified approximate periodic boundary conditions. By computing the longitudinal and transverse temperature gradients generated due to the application of uniform heat flux as well as the geometrical variation in RVE owing to temperature enhancement, thermal conductivity and CTE have been respectively determined. Comprehensive evaluations have been conducted to examine the effects of microstructural-level features, including fiber volume content and orientation, plus volume content and thickness of hollow spheres, on the effective thermal conductivity and CTE of pseudo-porous ternary E-glass/epoxy composites.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3