Strength of notched and un-notched thermoplastic composite laminate in biaxial tension and compression

Author:

Vankan Wilhelmus J1,Tijs Bas HAH2,de Jong Gerrit J3,de Frel Herman C2,Singh Niels K2

Affiliation:

1. Collaborative Engineering Systems Department, National Aerospace Laboratory NLR, Amsterdam, The Netherlands

2. Engineering Department, Fokker Aerostructures, Papendrecht, The Netherlands

3. Structures Testing & Evaluation Department, National Aerospace Laboratory NLR, Marknesse, The Netherlands

Abstract

Composite laminates are being increasingly used in a wide variety of industrial applications, but there are difficulties in applying these materials in ways that exploit their full potential, in particular under multi-axial loading. The objective of the present study is to determine by experiments the biaxial failure data for composite laminates produced by Fokker Aerostructures based on the thermoplastic UD carbon reinforced material AS4D/PEKK-FC. A test machine and accompanying cruciform specimens for in-plane biaxial failure tests have been developed. A coupon-level biaxial test program covering various biaxial load combinations in tension-tension, tension-compression and compression−compression has been successfully executed and biaxial failure values for the thermoplastic laminate have been determined. Besides, the experimental biaxial test program, also finite element models and analyses have been used to predict the global outcomes of the biaxial tests and to interpret the test results. Both plain (un-notched) and open-hole (notched) specimens of the thermoplastic laminate have been tested. The biaxial failure data have been collected and further processed in biaxial failure criteria. From the experiments, the failure strains, stresses and loads are determined and a failure envelope is created for both plain and open-hole specimens. Good agreement is found between the theoretically predicted envelopes and the test data. From the findings for biaxial failure criteria from this study, it is expected that structural weight saving can be achieved in the design of multi-axially loaded composite parts as compared to the design with the previous uni-axially based failure criteria.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3