Tribological behavior of polyacetal composite filled with rice bran ceramics particles under water lubrication

Author:

Shibata Kei1ORCID,Ii Takeshi1,Yamaguchi Takeshi1,Hokkirigawa Kazuo1

Affiliation:

1. Graduate School of Engineering, Tohoku University, Japan

Abstract

We investigated the tribological behavior of polyacetal polyoxymethylenecomposite filled with rice bran ceramics particles under water lubrication, compared to those of polyoxymethylene composites filled with glass beads and glass fibers. Furthermore, the local contact pressure between a particle and the paired ball was calculated based on a simple contact model. The polyoxymethylene/rice bran ceramics composite showed low wear ( ws < 10−8 mm2/N) and low friction ( μ < 0.10) under water lubrication, irrespective of the normal load and sliding velocity. On a Stribeck curve, the lubrication condition of the polyoxymethylene/rice bran ceramics composite appeared to be near hydrodynamic lubrication. The specific wear rates of the polyoxymethylene/rice bran ceramics composite were the lowest of the composites, regardless of the bearing characteristic number. A smooth worn surface was observed for both the polyoxymethylene/rice bran ceramics composite and the paired ball. The dimensionless roughness parameters of the polyoxymethylene/rice bran ceramics composite were smaller than 1.0, irrespective of the bearing characteristic number. The friction coefficients of the polyoxymethylene composites decreased exponentially with decreasing dimensionless roughness parameter; the low friction of the polyoxymethylene/rice bran ceramics composite resulted from the small roughness parameters. The rice bran ceramics particles indicated a small contact pressure per particle, which was nearly half the Vickers hardness of the steel ball. As a result, the rice bran ceramics particles rarely damaged the steel ball with increasing surface roughness. Therefore, the low friction of the polyoxymethylene composite filled with the rice bran ceramics particles was attributable to the decrease in the roughness, e.g., polishing without the formation of a transfer film and the filler detachment.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3