Damage Extension in Carbon Fiber/PEEK Crossply Laminates under Low Velocity Impact

Author:

Wang H.,Vu-Khanh T.1

Affiliation:

1. National Research Coitncil of Canada Indrrstrial Materials Institute 75 de Mortagne Bltd. Bouclierville, Québec, Canada J4B 6Y4 and école Polyecliniqite de Montréal Montréal. Québec, Canada

Abstract

Low-velocity impact in carbon fiber/PEEK crossply laminates has been studied by test and analysis. Emphases of the study were focused on the material properties which may control the damage extension of transverse crack and delamination. It was found that, considering the thermal residual stress and the crack constraining effect, extension of transverse cracks could not be predicted by the Strength of Materials approach. The impact-induced delamination could be characterized by the crack arrest concept of fracture mechanics. The delamination resulted from a Mode II-dominated unstable fracture, which occurred under displacement-controlled conditions and seemed to be arrested at a constant interlaminar fracture energy. It was found that the thermoplastic APC-2 composite exhibits the same damage modes as epoxy composites under low velocity impact. Both the matrix-controlled damage and the fiber-controlled penetration may become the dominant failure mode, depending on the stacking sequence of the laminate. The residual stress in the thermoplastic laminates is as high as half of the transverse strength of the unidirectional material. The crack constraining effect tends to increase the in situ transverse strength of the lamina as the lamina thickness decreases. Considering the residual stress and crack constraining effect, the transverse crack extension cannot be predicted by the Strength of Materials approach. The crack arrest concept of fracture mechanics seems to be a useful approach to predict the extension of impact-induced delamination. The delamination resulted from a Mode II-dominated unstable fracture, which occurred under displacement-controlled conditions and seemed to be arrested at a constant interlaminar fracture energy. By assuming the delamination arrest at about the time of maximum impact load, the delamination arrest toughness could be evaluated from the test data of [05/905/05] laminates. The delamination arrest toughness is also found to be close to the Mode II-propagation toughness of the material.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3