Microstructural characterization and wear properties of ultra-dispersed nanodiamond (UDD) reinforced Al matrix composites fabricated by ball-milling and sintering

Author:

Kaftelen H1,Öveçoğlu ML2

Affiliation:

1. Advanced Technology Education, Research and Application Center, Mersin University, Ciftlikkoy Campus, 33343, Mersin, Turkey

2. Particulate Materials Laboratories, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey

Abstract

Elemental aluminum (Al) powders reinforced with 1–10 wt% of ultra-dispersed nanodiamond (UDD) powders were ball-milled in a SpexTM Mixer/Mill between 0 and 120 min followed by consolidation and sintering. X-ray diffraction analyses on the ball-milled powders revealed only α-Al peaks, whereas Al4C3 phase was identified along with α-Al in all sintered composites. Increasing the addition of nanodiamond to Al-matrix resulted in improved hardness of both ball-milled and sintered composites. The wear resistances of the Al-UDD composites were significantly improved with increasing UDD contents. Under similar load and sliding conditions, the wear resistance of Al matrix composite containing 10 wt% nanodiamond enhances about 40 times when compared with unreinforced aluminum.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3