Extraction and characterization of novel lignocellulosic fibers from Centaurea hyalolepis plant as a potential reinforcement for composite materials

Author:

Makri Hocine12ORCID,Rokbi Mansour1ORCID,Meddah Mostefa1,Belayachi Naima3,Khaldoune Abderraouf1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Technology, University of M’sila, M'sila, Algeria

2. LMMS, Laboratory of Materials and Mechanical Structures, University of M’sila, M'sila, Algeria

3. University of Orléans, INSA CVL, Gabriel Lamé Mechanics Laboratory, Polytech Orléans, 45072, Orléans, France

Abstract

The aim of this investigation is to evaluate the use of new lignocellulosic fiber extracted from Centaurea hyalolepis plant as a potential reinforcement for light-weight composite applications. In this study, anatomical structure and morphological surface of Centaurea hyalolepis fiber were conducted. The physical-chemical, thermal, crystalline,mechanical, characteristics of extracted fibers were also examined using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and tensile test. ATR-FTIR analysis confirmed the existence of the main components of lignocellulosic fiber (lignin, cellulose, and hemicellulose). XRD revealed the presence of cellulose with a crystallinity index of 57.93%.By densimetry, the density of Centaurea hyalolepis was determined as 1.13 g/cm3. The Centaurea hyalolepis was found to be thermally stable up to 271°C. The kinetic activation energy was determined as 115.943 kJ/mol. Tensile tests revealed that the mean tensile strength and Young’s modulus of Centaurea hyalolepis fiber were about 372,5 MPa and 9.036 GPa respectively. Because of the dispersion in the experimental tensile results, the Weibull statistical analysis with two parameters was carried out. Regard these findings, the Centaurea hyalolepis fibers can be a suitable candidate for low density polymeric composites reinforcement.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3