An Equivalent Medium Method for the Vacuum Assisted Resin Transfer Molding Process Simulation

Author:

(Jonathan) Dong Chensong1

Affiliation:

1. Rakon Limited, One Pacific Rise, Mt. Wellington, Private Bag 99943, Newmarket, Auckland, New Zealand;

Abstract

Computer simulation has been an efficient and cost-effective tool for liquid composite molding, including resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and resin infusion, compared to trial and error. The control volume finite element method (CVFEM) has been the predominant method for simulation. When the CVFEM simulation is used for the VARTM process, because of the existence of two distinct flow media: fiber preform and high permeable media (HPM), 3-D models are required. Since the HPM is usually much thinner than the fiber preform, a large number of nodes and elements need to be used in simulation, which significantly increases the computation load and time. In addition, the time-consuming preprocessing process makes simulation not feasible for industry applications. This article presents an equivalent medium method (EMM) for fast and accurate VARTM process simulation. This method increases the thickness of the HPM or both the HPM and the fiber preform and applies the equivalent material properties. This is an improved method over previously presented equivalent permeability method (EPM) by correcting its two shortcomings: (1) The EPM does not account for the influence of the porosity of HPM, thus the resin flow through HPM is changed and (2) The EPM does not consider the change of through-thickness permeability after the equivalence. A new mesh generation algorithm is also discussed, which provides a faster and more convenient way for preprocessing. The approach presented in this article provides the fundamental for developing a universal computer simulation tool for both the RTM and VARTM processes. The effectiveness of this approach has been validated by comparing to the conventional CVFEM simulation and experiments.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3