Effects of nano reinforcing/matrix interaction on chemical, thermal and mechanical properties of epoxy nanocomposites

Author:

Yazman Şakir1ORCID,Uyaner Mesut2ORCID,Karabörk Fazliye3ORCID,Akdemir Ahmet2ORCID

Affiliation:

1. Ilgın Vocational School, Selçuk University, Turkey

2. Department of Aeronautical Engineering, Faculty of Aeronautics and Astronautics, Necmettin Erbakan University, Necmettin Erbakan University, Turkey

3. Department of Mechanical Engineering, Faculty of Engineering, Aksaray University, Turkey

Abstract

This article investigates the impact of addition various types of nanoparticles with different structural, dimensional, and morphological properties on the interphase region formed between the particle/matrix and the curing behavior of the epoxy affect the nanocomposite material properties. For this purpose, epoxy nanocomposites (NCs) were produced by adding multi-walled carbon nanotube (MWCNT) and alumina (Al2O3) nanoparticles (NPs) into the epoxy matrix at different rates (0.5–2.0 wt.%). The effects of the particle/matrix interaction on the properties of the composite have been revealed by chemical, thermal, mechanical analyzes and microstructure investigations. An increase in the absorption density, which reveals the physical interaction of nanoparticles with the epoxy matrix, was observed in Fourier-transform infrared spectroscopy. Absorption vibration peak intensities in nanocomposite samples were at most 1.0 wt.% Al2O3 and 1.25 wt.% CNT added nanocomposites. It was observed that the Tg value increased depending on the number of nanoparticles. The addition of Al2O3 increased Tg values more than CNT. Besides, the mechanical properties of NCs were determined by tensile tests. The highest increase in mechanical properties was achieved by adding 1.25 wt.% CNT and 1.0 wt.% Al2O3, respectively. Mechanical properties tended to decrease at higher addition rates. The shape, size, amount, and distribution of nanoparticles added into the epoxy matrix directly affected the NCs' properties. It has been determined that homogeneously dispersed spherical Al2O3 nanoparticles are more effective than fiber-shaped CNTs in the properties of NCs.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3