Graphene-modified carbon/epoxy nanocomposites: Electrical, thermal and mechanical properties

Author:

Imran Kazi A1,Shivakumar Kunigal N1

Affiliation:

1. Center for Composite Materials Research, Department of Mechanical Engineering, North Carolina A&T State University, USA

Abstract

A primary limitation of fiber-reinforced polymer composites in aircraft applications is susceptibility to lightning because of poor electrical, thermal and electromagnetic properties. The current methods to mitigate the lightning strike in aircraft have added weight and reduced the performance. Previous graphene-modified epon 828 epoxy matrix study showed that three-roll dispersion is effective, repeatable and potentially scalable to disperse graphene in to epoxy to increase the electrical conductivity. Percolation threshold of graphene was found to be about 1.0 wt.% that enhanced electrical conductivity of epon 828 epoxy matrix from 4.3 × 10−15 to 2.6 × 10−6 S/m, thermal conductivity doubled and fracture toughness increased by one-third. In the present study, the same graphene/epon 828 is reinforced by carbon fabric by hand lay-up followed by compression molding. The resulting composite laminate was tested for electrical, thermal and mechanical properties and results of this nanocomposite laminates were compared with base composite laminate.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3