Microstructural and basic mechanical characteristics of ZA27 alloy-based nanocomposites synthesized by mechanical milling and compocasting

Author:

Bobić Biljana1ORCID,Vencl Aleksandar2ORCID,Ružić Jovana3,Bobić Ilija3,Damnjanović Zvonko4

Affiliation:

1. Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia

2. Faculty of Mechanical Engineering, University of Belgrade, Serbia

3. Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia

4. Computer Centre Bor, Serbia

Abstract

Particulate nanocomposites with the base of ZA27 alloy were synthesized using an innovative route, which includes mechanical milling and compocasting. Scrap from the matrix alloy and ceramic nanoreinforcements were mechanically milled using the ball-milling technique, which led to the formation of composite microparticles. The use of these particles in the compocasting process provided better wettability of ceramic nanoreinforcements in the semi-solid metal matrix, which resulted in a relatively good dispersion of the nanoreinforcements in nanocomposite castings. The presence of nanoreinforcements led to the grain refinement in the matrix of nanocomposites. The mechanical properties of the synthesized nanocomposites are improved and compared with the properties of the metal matrix. The observed increase in the hardness of nanocomposites with Al2O3 nanoreinforcements (20–30 nm) was 6.5% to 10.8%, while the yield strength of these nanocomposites has increased by 12.2% to 23.2%. The hardness and compressive yield strength of the nanocomposites with Al2O3 nanoparticles (100 nm) increased by 1.7% to 8.0% and 2.3% to 8.3%, respectively. The increase in hardness of the nanocomposites with SiC nanoparticles (50 nm) was 11.5% to 20.6%, while the increase in the yield strength was 15.6% to 24.5%. The greatest contribution to the overall strengthening in the synthesized nanocomposites is the result of increased dislocation density due to the difference in coefficients of thermal expansion for the matrix alloy and nanoreinforcements.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3