Affiliation:
1. Department of Medical Physics, School of Medicine, University of Patras, Rio- Patras, Greece
2. Department of Electronics and Microelectronics, Technical University of Varna, Varna, Bulgaria
Abstract
A methodology for generation of realistic three-dimensional software models of carbon fiber-reinforced polymer (CFRP) structures, dedicated for use in simulation studies of advanced X-ray imaging techniques for non-destructive testing (NDT), has been developed, implemented, and evaluated. Two CFRP models are presented in this paper, one built as a set of stacked layers that contain continuous carbon bundles and a second as a braided textile from woven carbon bundles. The following CFRP defects were modeled: porosity, missing carbon bundles, and non-carbon inclusions. X-ray projection images were generated using an in-house developed X-ray imaging simulator. The obtained preliminary visual and quantitative validation results showed an overall good correlation of characteristics between synthetic and experimental data radiographs and justify the use of this model for research in CFRP X-ray imaging. The application of the CFRP model is demonstrated in a feasibility study that aims to computationally evaluate the appropriateness of two advanced X-ray imaging techniques: cone-beam CT (CBCT) and tomosynthesis (limited arc tomography), as inspection techniques for NDT of CFRP parts. The simulation showed that in all cases the CBCT approach outperformed both conventional radiography and tomosynthesis in terms of defect characterization and visualization.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献