Aero-structural optimization and actuation analysis of a morphing wing section with embedded selectively stiff bistable elements

Author:

Rivas-Padilla José R1ORCID,Boston D Matthew2,Boddapati Karthik1,Arrieta Andres F1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

2. School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA

Abstract

Morphing wings provide a potential avenue to improve aerodynamic performance of aircraft operating at multiple design conditions. Nevertheless, morphing wing design is constrained by the mutually exclusive goals of high load-carrying capacity, low weight, and sufficient aerodynamic control authority via conformal shape adaptation. This trade-off can be addressed by exploiting the stiffness selectivity and shape “lock-in” properties enabled by using bistable beam-like elements within compliant structures. In this paper, we present an aero-structural optimization method to realize morphing structures with selective stiffness and shape “lock-in” capability from embedded bistable elements. We leverage an embeddable beam element with an invertible curved arch that provides stiffness selectivity and camber variation to the proposed rib geometry. Optimization objectives and constraints are designed to maximize the structure’s stiffness change and camber morphing “lock-in” effect when operating at two distinct flight conditions. Using the optimization results, we manufacture a wing section demonstrator with selective stiffness and “lock-in” morphing featuring two optimized ribs, a load-carrying skin made of a carbon reinforced laminate, Macro-Fiber Composite (MFC) actuators, and a servo-controlled mechanism for switching the bistable elements’ states. The power and energy requirements of actuating and holding a target deflection are experimentally measured and compared. The results show that the bistable elements can assist in holding a target deflection at a reduced energy cost. Finally, we test the experimental demonstrator in a low-speed wind tunnel demonstrating the load carrying capability and lift variation achieved from switching states.

Funder

Air Force Office of Scientific Research

Army Research Laboratory

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3