Enhanced Young’s Modulus of Al-Si Alloys and Reinforced Matrices by Co-continuous Structures

Author:

Lasagni Fernando1,Degischer Hans Peter2

Affiliation:

1. Institute of Materials Science and Technology, Vienna University of Technology Karlsplatz 13/E308, A-1040 Vienna, Austria,

2. Institute of Materials Science and Technology, Vienna University of Technology Karlsplatz 13/E308, A-1040 Vienna, Austria

Abstract

In the present work, the elastic behavior of different hypoeutectic and hypereutectic Al-Si alloys and different Al2O3 short fiber and SiC particle reinforced materials (SFRM and PRM, respectively) is studied. The effective Young’s modulus (E) of materials was experimentally measured and compared with the different theoretical predictions of Hashin-Strikman, Tuchiniskii, shear lag, and the rule of mixtures (ROM). The unreinforced alloys present an interconnected lamellar Si structure after fast solidification, which increases the Young’s modulus up to that of the Tuchiniskii prediction for interpenetrating skeletal structures. On the other hand, alloys presenting isolated and coarse Si particles (after spheroidization treatment at 540°C) are well described by the lower bound of the ROMs. Similarly, the interconnected Si-SiC structure observed in 10 and 70 vol% SiC reinforced AlSi7Mg and AlSi7 matrices in the as cast condition is responsible for the higher stiffness of the composite, if compared with that of Al99.5 or spheroidized AlSi7 matrices. An analogous behavior is observed in the SFRMs in the as cast condition, where the Si lamellae bridge the Al2O3 fibers, increasing the Young’s modulus of the composites, if compared with the conditions of spheroidized Si. Furthermore, the primary Si particles produce an improvement in the Young’s modulus by connecting several fibers in the case of a short fiber-reinforced hypereutectic AlSi18 matrix.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3