Foam-formed cellulose composite materials with potential applications in sound insulation

Author:

Nechita P1,Năstac S2

Affiliation:

1. Department of Environmental, Applied Engineering and Agriculture, ‘Dunărea de Jos’ University of Galati, Galati, Romania

2. Department of Engineering and Management Sciences, ‘Dunărea de Jos’ University of Galati, Galati, Romania

Abstract

Use of foam-formed cellulose composite materials is a viable alternative that provides potential savings in terms of raw materials, energy and water compared with conventional methods for obtaining the fibrous composites. This new innovative manufacturing method leads to obtaining porous materials with low density and low environmental impact, which could replace the petroleum-based products in different industrial application fields like sound control. In this paper is presented a methodology for producing low-density cellulose composite materials in foam media. In this methodology a surfactant is mixed with cellulose fibres (from virgin pulp and recovered papers) at high shear velocity (2000 r/min) to entrain air, dewatered on Buchner funnel under low vacuum and air dried in non-restrained conditions. The obtained composite materials have been tested by sound insulation parameters (sound transmission loss and absorption coefficients) using two experimental impedance tubes with four-microphone configuration and anechoic termination. Three samples of foam-formed cellulose composites and one water-formed composite sample were obtained. Their sound insulation performances were compared with two different commercially available petroleum-based materials currently used in sound insulation applications (i.e. expanded/extruded polystyrene). The experimental results show comparable performances between foam-formed cellulose composites and polystyrene-based samples, but in terms of the environmental impact, these materials can be an appropriate green alternative which can cut the costs of recycling process.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3