Affiliation:
1. School of Mechanical Engineering, Northwestern Polytechnical University, China
2. Aircraft Strength Research Institute of China, China
Abstract
The single-lap interference-fit bolted joint is widely used in composite structures. In order to get an accurate prediction of bearing strength, secondary bending and bolt load effects are studied in the present research via combination of experimental and numerical methods. The joint specimens with four levels of interference-fit size ( I) and bolt torque ( T) were tested according to ASTM standard D5961 to evaluate the bearing behavior and joint stiffness. Meanwhile, a finite element model considering the shear nonlinearity is built to simulate the bearing strength and evolution of intralaminar damage and delamination. Results show that the bearing behavior of composite joints is more sensitive to bolt load than interference-fit size, and the optimal pattern is I = 0.4% and T = 8 N-m, which can effectively improve bearing performance and alleviate secondary bending effect. Matrix failure and fiber–matrix shear-out failure accompanied with delamination are commonly observed and localized on the bearing side of joint-holes, indicating the desired non-catastrophic failure modes.
Funder
Transfer and Promotion Plan of Scientific and Technological Achievements
Fund for Distinguished Young Scholars in Shaanxi Province of China
National Natural Science Foundation of China
Shaanxi New-star Plan of Science and Technology
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献