Mesoscale modeling of S-2 glass/SC-15 epoxy composites: Plain-weave architecture

Author:

Carpenter Alexander J1,Chocron Sidney1,Anderson Charles E1

Affiliation:

1. Southwest Research Institute, Engineering Dynamics Department, San Antonio, USA

Abstract

S-2 glass composites can readily serve as backing materials for armor systems due to their light weight and tensile properties. However, high-fidelity ballistic modeling of these composites requires accurate predictions of their nonlinear deformation and failure behaviors, which can prove challenging. This paper describes simulations of a plain-weave S-2 glass composite at the mesoscale using a mesh geometry that individually models the S-2 glass yarns, epoxy resin matrix, and yarn/matrix interfaces as separate entities. Simulation results are compared to a wide variety of mechanical tests designed to measure the response of the composite to tension, shear, and delamination. Although the individual yarns, matrix, and interfaces are described using relatively simple material models, the overall composite model can accurately reproduce behaviors such as nonlinear deformation, yarn breakage, and delamination in both tension and shear.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3