A new method for ultrasonic detection of peel ply at the bondline of out-of-autoclave composite assemblies

Author:

LeMay Gary S1,Askari Davood1ORCID

Affiliation:

1. Multifunctional Nanocomposites Lab, Department of Mechanical Engineering, Wichita State University, USA

Abstract

Out-of-autoclave materials have long been an established material system for secondary structural applications; however, recent advancements in material properties allow for more advanced structural applications. Even though certain out-of-autoclave properties have achieved parity with autoclaved cured materials, out-of-autoclave materials are cured at reduced temperatures and pressures resulting in less compaction and homogeneity. The consequence is extraneous ultrasonic signals, due to internal reflections and refractions that cause attenuation, potentially masking defects leading to unidentifiable indications. Advanced algorithms were developed to improve the signal to noise ratio between constituents of similar acoustic impedance in bonded out-of-autoclave carbon fiber reinforced polymer assemblies. Conventional ultrasonic nondestructive testing techniques and analysis software cannot consistently achieve signal to noise ratios that meet quantifiable rejection thresholds of accurately sized peel ply inserts at the bonded interface of composite assemblies. Ultrasonic pulse echo with full waveform capture was used to inspect a reference standard with peel ply inserts placed between the adhesive and three-dimensional-woven fabric preform. The ultrasonic signal was produced by a 64 element array transducer with a central frequency of 2.8 MHz. Waveform post-acquisition analysis with post processing software was used to analyze and enhance the signal response between the peel ply and the bondline resulting in the final algorithm. To verify the results, the signal to noise ratio of each insert was calculated for both the raw and processed data. As the measure of detectability, the method relies on principles of statistical measurement to provide an industry standard signal to noise response of 3:1.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3