Affiliation:
1. Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
Abstract
Interleaving is a well-recognized method for enhancing the interlaminar fracture toughness of composite materials. However, theoretical toughness is often not realized since cracks tend to propagate through regions of lower toughness. While most studies have focused on the effect of interleaf properties, e.g., thickness and interleaf resin properties, on composite interlaminar fracture toughness, the effect of matrix resin properties on interleaved composite toughness has been overlooked. Recently, we hypothesized that there is a relationship between toughness translation and the ratio of matrix to interleaf resin toughness. In this work, we use additive manufacturing to test this hypothesis with a range of resins in interleaved composite. Toughness is quantified via mode I delamination resistance. Our results confirm our hypothesis that the ratio of matrix to interleaf resin fracture toughness, i.e., the ratio of [Formula: see text], is directly correlated to the degree of toughness translation. More specifically, a ratio of approximately 0.5 is required for effective interleaving; below 0.5, the toughness translation is significantly below the theoretical value. This approach has important implications for the design and fabrication of tough composites via choice of resins.