Effects of hybrid yarn preparation technique and fiber sizing on the mechanical properties of continuous glass fiber-reinforced polypropylene composites

Author:

Merter N Emrah1,Başer Gülnur2,Tanoğlu Metin1

Affiliation:

1. Department of Mechanical Engineering, İzmir Institute of Technology, İzmir, Turkey

2. Metyx Composites Inc., İstanbul, Turkey

Abstract

In this study, hybrid yarns were developed by commingling the continuous polypropylene and glass fibers using air jet and direct twist preparation techniques. The non-crimp fabrics were obtained with ± 45 ° fiber orientation from these hybrid yarns. The fabrics were prepared with fiber sizings that are compatible and incompatible with polypropylene matrix to investigate the effect of interfacial adhesion on the properties of the thermoplastic composites. Composite panels were produced from the developed fabrics by hot press compression method and microstructural and mechanical properties of the composites were investigated. It was found that type of the hybrid yarn preparation technique and glass fiber sizing applied on the glass fibers have some important role on the properties of the composites. Composites made of fabrics produced by air jet hybrid yarn preparation technique exhibited better results than those produced by direct twist covering (single or double) hybrid yarn preparation techniques. The highest flexural properties (99.1 MPa flexural strength and 9.55 GPa flexural modulus) were obtained from the composites manufactured from fabric containing compatible sizing, due to better adhesion at the interface of glass fibers and polypropylene matrix. The composite fabricated from fabric with polypropylene compatible sizing also exhibited the highest peel resistance (interlaminar peel strength value of 5.87 N/mm). On the other hand, it was found that hybrid yarn preparation technique and type of the glass fiber sizing have insignificant effect on the impact properties of the glass fiber/polypropylene composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3