Measurement and Compensation of Spring-back of a Hybrid Composite Beam

Author:

Jung Woo-Kyun1,Chu Won-Shik1,Ahn Sung-Hoon2,Won Myung-Shik3

Affiliation:

1. School of Mechanical and Aerospace Engineering & Institute of Advanced Machinery and Design Building 301, Room 1205, Seoul National University San 56-1, Shinlim-dong, Kwanak-ku, Seoul, Korea, 151-742

2. School of Mechanical and Aerospace Engineering & Institute of Advanced Machinery and Design Building 301, Room 1205, Seoul National University San 56-1, Shinlim-dong, Kwanak-ku, Seoul, Korea, 151-742,

3. Agency for Defence Development, Yuseong P.O. Box 35 Daejeon, Korea, 305-600

Abstract

Fiber-reinforced composite materials have been advanced in various applications for their excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation, so-called spring-back, mainly caused by temperature drop from the process temperature to room temperature. In order to fabricate designed part geometry, the spring-back must be understood especially in hybrid composites consisting of distinct groups of different materials. In this research, the spring-back of a hybrid composite beam is measured by a series of experiments, and is predicted by the classical lamination theory (CLT) and finite element analysis (ANSYS). To confirm the predicted spring-back, {glass fiber/epoxy} + {carbon fiber/epoxy} asymmetric hybrid composites are fabricated under various conditions such as cure cycle, laminate thickness, stacking sequence, and curing sequence. The results from CLT and FEA agree well with the experimental data, but the spring-back cannot be removed completely. To fabricate flat hybrid composite beams, a web-based spring-back compensation service is developed. The CLT-based code allows the user to predict spring-back and to fabricate a mold that compensates spring-back.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3